18 research outputs found

    Brain-machine interfaces for rehabilitation in stroke: A review

    Get PDF
    BACKGROUND: Motor paralysis after stroke has devastating consequences for the patients, families and caregivers. Although therapies have improved in the recent years, traditional rehabilitation still fails in patients with severe paralysis. Brain-machine interfaces (BMI) have emerged as a promising tool to guide motor rehabilitation interventions as they can be applied to patients with no residual movement. OBJECTIVE: This paper reviews the efficiency of BMI technologies to facilitate neuroplasticity and motor recovery after stroke. METHODS: We provide an overview of the existing rehabilitation therapies for stroke, the rationale behind the use of BMIs for motor rehabilitation, the current state of the art and the results achieved so far with BMI-based interventions, as well as the future perspectives of neural-machine interfaces. RESULTS: Since the first pilot study by Buch and colleagues in 2008, several controlled clinical studies have been conducted, demonstrating the efficacy of BMIs to facilitate functional recovery in completely paralyzed stroke patients with noninvasive technologies such as the electroencephalogram (EEG). CONCLUSIONS: Despite encouraging results, motor rehabilitation based on BMIs is still in a preliminary stage, and further improvements are required to boost its efficacy. Invasive and hybrid approaches are promising and might set the stage for the next generation of stroke rehabilitation therapies.This study was funded by the Bundesministerium für Bildung und Forschung BMBF MOTORBIC (FKZ13GW0053)andAMORSA(FKZ16SV7754), the Deutsche Forschungsgemeinschaft (DFG), the fortüne-Program of the University of Tübingen (2422-0-0 and 2452-0-0), and the Basque GovernmentScienceProgram(EXOTEK:KK2016/00083). NIL was supported by the Basque Government’s scholarship for predoctoral students

    Laue micro-diffraction and crystal plasticity finite element simulations to reveal a vein structure in fatigued Cu

    No full text
    The formation of a vein during cyclic shearing of a single copper crystal oriented for single slip can be followed in transmission Laue diffraction by analyzing the spatially resolved lattice rotation evolution. Because Laue transmission integrates the signal over the thickness of the sample, the structure of the vein in the beam direction is a priori believed to be inaccessible. Here we show that the vein geometry in the beam direction can be retrieved by comparing lattice curvature tensor components from crystal plasticity finite element simulations with those experimentally derived. Virtual sectional analysis facilitates the interpretation of the measured lattice curvatures of quasi-2D dislocation structures, allowing identifying a vein morphology that is slightly vertically and horizontally inclined in the through thickness direction

    Laue micro-diffraction and crystal plasticity finite element simulations to reveal a vein structure in fatigued Cu

    No full text
    The formation of a vein during cyclic shearing of a single copper crystal oriented for single slip can be followed in transmission Laue diffraction by analyzing the spatially resolved lattice rotation evolution. Because Laue transmission integrates the signal over the thickness of the sample, the structure of the vein in the beam direction is a priori believed to be inaccessible. Here we show that the vein geometry in the beam direction can be retrieved by comparing lattice curvature tensor components from crystal plasticity finite element simulations with those experimentally derived. Virtual sectional analysis facilitates the interpretation of the measured lattice curvatures of quasi-2D dislocation structures, allowing identifying a vein morphology that is slightly vertically and horizontally inclined in the through thickness direction. (C) 2017 The Authors. Published by Elsevier Ltd

    Following dislocation patterning during fatigue

    Get PDF
    AbstractPrecursors of failure are dislocation mechanisms at the nanoscale and dislocation organization at the mesoscale responsible for long-range internal stresses and lattice rotation. Detailed information on the link between both scales is missing, computationally and experimentally. Here we present a method based on x-ray Laue diffraction scanning providing time and sub-micron spatially resolved evolution of geometrical necessary dislocations in volumes that are similar to what advanced computational models can achieve. The approach is used to follow dislocation patterning during accumulation of fatigue cycles using a newly developed miniaturized shear device. Performed on Cu during cyclic shear, it reveals early dislocation patterning influenced by pre-existing dislocation structures. The quantitative information on non-homogeneous structure formation and its evolution corresponds to the need for synergies with continuum dislocation plasticity simulations of fatigue or any other type of plastic deformation

    Following dislocation patterning during fatigue

    No full text
    Precursors of failure are dislocation mechanisms at the nanoscale and dislocation organization at the mesoscale responsible for long-range internal stresses and lattice rotation. Detailed information on the link between both scales is missing, computationally and experimentally. Here we present a method based on x-ray Laue diffraction scanning providing time and sub-micron spatially resolved evolution of geometrical necessary dislocations in volumes that are similar to what advanced computational models can achieve. The approach is used to follow dislocation patterning during accumulation of fatigue cycles using a newly developed miniaturized shear device. Performed on Cu during cyclic shear, it reveals early dislocation patterning influenced by pre-existing dislocation structures. The quantitative information on non-homogeneous structure formation and its evolution corresponds to the need for synergies with continuum dislocation plasticity simulations of fatigue or any other type of plastic deformation
    corecore